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An algorithm is presented for computing the topological entropy of a piecewise 
monotone map of the interval having three monotone pieces. The accuracy of 
the algorithm is discussed and some graphs of the topological entropy obtained 
using the algorithm are displayed. Some of the ideas behind the algorithm have 
application to piecewise monotone functions with more than three monotone 
pieces. 
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1. B A C K G R O U N D  

The topological entropy of a map gives a quantitative measure of the com- 
plexity of a system modeled by iterating the map. Collet et al. (4) and Block 
e ta / .  (2) have given algorithms to compute the topological entropy in the 
special case of unimodal maps of an interval. An algorithm to compute the 
entropy in the more general case of piecewise monotone maps of an inter- 
val was recently given by G6ra and Boyarsky. (6) Although more general, 
their algorithm was not as efficient nor as accurate as that in ref. 2 for 
unimodal maps. Although refs. 2 and 4 both use kneading sequences and 
are based on the work of Milnor and Thurston, (8) the approaches are quite 
different. In ref. 4, use is made of an analytic function whose coefficients are 
determined by the kneading sequence and one of whose roots can be used 
to determine the topological entropy. In ref. 2, the algorithm is based 
on the fact that the tent maps have known topological entropy and 
the kneading sequences of these maps can be used to determine if the 
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topological entropy of one of these maps is greater than or less than that 
of another unimodal map. 

This paper continues the approach of ref. 2 and extends it to mappings 
with three monotone pieces. The method is based on itineraries and 
kneading matrices. Let h(f) denote the topological entropy of the map f 
We associate a kneading matrix K(f) to each piecewise monotone map f 
and define a partial ordering on kneading matrices so that if K(f)<<, K(g), 
then h(f)<~h(g). This result is obtained by combining a result of 
Misiurewicz and Szlenk (7) with a modification of a result of Baldwin. ~1) 

Using this result, we are able to obtain an effective algorithm for com- 
puting the topological entropy for maps with three monotone pieces. The 
algorithm is based on comparing the kneading matrix of the map whose 
entropy we wish to compute with the kneading matrix of a map whose 
entropy is known. It is in this respect that this paper is a natural extension 
of ref. 2. 

The main obstacle in implementing an algorithm based on these ideas 
is that for particular maps f and g it may happen that neither K(f)<~ K(g) 
nor K(f)>~K(g). In Section4 we consider comparisons between an 
arbitrary map g of the interval with three monotone pieces and a map fs 
with slope a constant absolute value s with three monotone pieces. In that 
section we show that except for a countable number of values of s, there 
is always some mapf~ for which K(g)<~ K(f,) or K(g)>~ K(f,). In Section 5 
a practical algorithm is presented. The algorithm appears to be more 
accurate and require less computer time than the algorithm given in ref. 6 
for three monotone pieces. The algorithm presented in this paper has two 
advantages. An upper bound on the number of function evaluations can be 
prescribed and the error of the estimate of the topological entropy can also 
be prescribed. In Section 6 some pragmatic items for implementing the 
algorithm are dealt with. A numerical experiment is presented which gives 
strong empirical evidence that roundoff error and other possible obstacles 
discussed in the paper do not interfere with the practical implementation of 
the algorithm. Section 7 presents some graphs of the topological entropy 
obtained using our algorithm. 

Before giving a detailed presentation of our algorithm and its 
theoretical justification, we discuss heuristically the problem of computing 
the topological entropy and the role that we imagine our work may play 
in a more general algorithm. 

2. HEURISTIC D I S C U S S I O N  

The main tool of this paper is Theorem 3.3: if K(f)~K(g), then 
h(f) <~h(g). The idea behind this result is that if K(f)<~ K(g), then for 
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each n there are as many distinct itineraries for g of length n as there are 
for f. The growth rate of the number of itineraries of length n determines 
the topological entropy. This implies that h(f)<~ h(g). There is no require- 
ment in that theorem that f or g have three monotone pieces, merely that 
they have the same number of monotone pieces. Whenever f is piecewise 
linear with slope + s  on each monotone piece and K(f)<~K(g), then since 
h(f) = log(s), log(s) <~ h(g). Similarly, if K(g) ~ K(f), then h(g) <<. log(s). 

In Section 4 we show that if g has three monotone pieces, then for all 
but countably many s e [0, log(3)] there is a n f w i t h  three monotone pieces 
and with slope i s  on each monotone piece such that K(f)<~K(g) or 
K(g) <~ K(f). To obtain this comparison, we are prompted to consider the 
family PL(s) of piecewise monotone functions with three monotone pieces 
having slope i s  on each monotone piece. What allows us to find the 
required comparison is the fact that this is a one-parameter family of 
functions. 

Now, for a function g with more than three monotone pieces, one 
needs a way of guaranteeing that there is an f with the same number of 
monotone pieces and with slope +s  on each monotone piece such that 
K(f) <<. K(g) or K(g) <~ K(f). What makes the search for this required com- 
parison more complicated when g has more than three monotone pieces is 
that the corresponding family PL(s) will no longer be a one-parameter 
family. One would need an algorithm to search through this family of such 
functions f to find the appropriate comparison. One would also need some 
theorem which would guarantee that such a comparison would always 
exist. We feel that the comparisons will always exist and that an effective 
algorithm for searching for this comparison will be found. The advantage 
to this approach is that it can be used to determine the topological entropy 
to any precision desired. 

One should expect that as the number of monotone pieces increases, 
the computation necessary to compute the topological entropy will also 
increase. It is useful to compare the amount of computation required in the 
algorithm for unimodal maps studied in ref. 2 with that presented here for 
functions with three monotone pieces. Consider a unimodal function 
f:  [0, 1 ] ~ [0, 1 ]. If we assume that 50 terms were used in the kneading 
sequence and that computations were carried to ten-digit accuracy, then at 
most 2000 function evaluations are required in the algorithm in ref. 2 to 
determine the topological entropy. If we use 50 terms in the kneading 
matrix in the algorithm described in this paper, then at most 160,000 func- 
tion evaluations will be necessary. This is still a reasonable number, espe- 
cially since with this protocol one usually obtains the topological entropy 
to several digits accuracy. This number of computations usually takes only 
a few seconds. What would we expect to happen as the number of 
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monotone pieces is increased further? It is likely that the number of func- 
tion evaluations that will be required will be at most (n - 1) x 50 x 40" 1, 
where n is the number of monotone pieces of the function. Thus, although 
this approach promises precise estimates of the topological entropy with 
modest computational expense for functions with a small number of 
monotone pieces, the computation required as n grows will quickly get out 
of hand. Additional insight will be needed to reduce the number of 
computations to a reasonable level for large n. 

Some remarks are in order concerning wider uses of the kneading 
matrix. The basic features of the kneading matrix are given in ref. 8. The 
kneading matrix does not completely determine the topological conjugacy 
class of a map of the interval. However, it does play a significant role in 
that determination. For a complete topological classification of the 
piecewise monotone maps of the interval, see the paper by Baldwin. (1) We 
are indebted to that paper for the ideas leading to Theorem 3.3. 

3. RESULTS FOR ARBITRARY PIECEWISE 
M O N O T O N E  M A P S  

Let f be a function defined on an interval [a, b]. We say that f is 
piecewise monotone i f f  is continuous and there are points 

a = z o < z l  < . . .  < z k = b  

such that for each i = 0,..., k - 1 ,  f is either strictly increasing or strictly 
decreasing on [zi, zi+ 1], 

If f is piecewise monotone on [a, b], let N =  N(f )  denote the number 
of maximal monotone intervals for f ,  and let 

a= to(f)< t2(f)< t4(f) . . .  < t2N(f)=b 

denote the endpoints of these maximal monotone intervals. Note that these 
points are subscripted by even integers. We are reserving the missing odd 
integers to subscript the intervals between these points. Note that each 
t2i(f) is a relative maximum or a relative minimum for f We write tzi in 
place of t2i(f) if the map f is understood. 

We define a collection of intervals and points Jk=Jk( f )  for 
k = 0  ..... 2N by setting J k =  {tk} if k is even and Jk=(t~_l ,  tk+l) if k is 
odd. See Fig. 1 for a diagram. For each x e I-a, b] the itinerary of x with 
respect to f is the infinite sequence of integers 

Iy(x) = (ao(x), aa(x),...) 



Topological Entropy 759 

b 

a 

S tz(f ) t 4 ( f )  

a =t 0(f) = J0(f) b = t~u ( f )  = J2N ( f )  

Fig. 1. A typical piecewise monotone function f Here N = 7. 

where aj(x) = k if and only i f fJ(x)  e ark. Here, f J  denotes composition o f f  
with itselfj times (and f0  denotes the identity map). The itinerary is a way 
of coding the successive iterates of a point. An odd integer in the itinerary 
indicates that the corresponding iterate is in one of the open maximal 
monotone intervals, while an even integer indicates that the corresponding 
iterate is exactly a relative extreme point. If I f ( x )=  (ao(x), al(x),...) is any 
itinerary and i is a positive integer, then the finite sequence 

(ao(x), al(x),..., a,(x)) 

is called a finite itinerary of length i + 1. 
We define the sign function for f to be the function with domain 

{1, 3, 5 ..... 2 N - 1 }  defined by sign(k)= 1 if f is increasing on J~ and 
sign(k)= - 1  if f is decreasing on Jk. Note that the values of the sign 
function alternate between + 1 and - 1. 

L e t f a n d  g be piecewise monotone functions with the same number of 
maximal monotone intervals and the same sign function. Let 

a = (ao (x ) ,  a l ( x ) , . . . )  = l a x )  

for some x in the domain off ,  and let 

b = (bo(y), bl(y),...) --- Ig(y) 

for some y in the domain of g. We say a < b if both of the following hold: 

1. aiv a bi for at least one i. 
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2. Let k be the smallest nonnegative integer with ak ~ bk. If k = 0, 
then a0 < bo, and if k > 0, then a0,..., ak_ 1 are all odd and 

sign(ai ag<  sign(hi) bk 
t 0 i 

Note that in the above inequality, 

k - - I  k - - 1  

[ I  sign(ai)= l-I sign(bi) 
i = 0  i = O  

This product will be - 1  if the itinerary lies in an interval on which the 
map is decreasing an odd number of times and will be + 1 otherwise. As 
usual, we will write a 4 b if either a <  b or a = b, a > b if b < a, and a/> b 
if b ~ a .  

The kneading matrix o f f  is the ordered n-tuple 

K( f  ) = (Is(f  (to(f))),..., Is( f  ( t2N(f ) ) ) ) 

Thus, the kneading matrix encodes the itineraries of the images of the 
relative extreme points. Although this definition is formally different than 
that given in, ~8) it carries the same essential information and is more practi- 
cal for our purposes. 

We say K(f)<~ K(g) if Is(f(ti(f)))<~ Ig(g(ti(g)) ) for each i such that 
t i(f)  and ti(g) are relative maxima and Is(f(ti(f)))>~ Ig(g(ti(g))) for each 
i such that t~(f) and t~(g) are relative minima. Note that it may happen 
that neither K(f)  <~ K(g) or K(g) <~ K(f). 

Our first lemma may be obtained by a slight modification of the proof 
of Lemma 8 of ref. 1. 

I . e m m a  3.1. Suppose that K(f)<~K(g). Let a be a finite itinerary 
of some point under f with every element of a odd. Then there is a point 
in the domain of g with finite itinerary a. 

This lemma is useful, since the entropy of a piecewise monotone map 
may be determined by the finite itineraries. More precisely, we have the 
following lemma, which follows from Lemma 6 of ref. 7. 

k e m m a  3.2. L e t f b e  piecewise monotone. For  each positive integer 
k, let Ok(f) denote the number of distinct finite itineraries of length k 
(of points under f )  with each element in the finite itinerary odd. Then 

h ( / ) =  lira l log(O, ( f ) )  
n ~ o v  F/ 

where h(f)  is the topological entropy of the map f. 
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It follows from Lemma 3.1 that if K(f)~<K(g), then Ok(f)<~ Ok(g) 
for each positive integer k. Combining this fact with Lemma 3.2, we 
immediately obtain the following. 

T h e o r e m  3.3. If K(f) <~ K(g), then h(f) ~ h(g). 

This theorem will be the theoretical basis for the algorithm we 
develop. Suppose that f is a piecewise monotone map on I with three 
monotone pieces. The next section shows that for all s ~ (0, 3)\A where A 
is a countable set, there is a gs having three monotone pieces with slope + s 
on each monotone piece such that K(f)<<. K(gs) or K(f)>>. K(g,). 

It also should be pointed out that there is no loss of generality in 
assuming that the map f: I--* I takes the endpoints of I to endpoints. The 
reason for this is that we can replace the map f by another map g having 
the same number of monotone pieces and having the same topological 
entropy with g taking the endpoints of I to endpoints. If this is not clear, 
then simply observe that, given any map f." I--*/, we can construct a map 
g: I '  --+ I', where I ' =  [-a', b'], with the following properties. (1) The interval 
I will be contained in I'. (2) The restriction of g to I will be f ,  g l I - f  
(3) The map g will have g(a')6 {a', b'} and g(b')e {a', b'}. (4) The map g 
will be linear on [a', a] and on [b, b']. (5) The map g will have the same 
number of monotone pieces as f Then g will have the same topological 
entropy as f Thus, we can substitute g and I '  for f and I in the algorithm 
and g will take the endpoints of I '  to endpoints of I'. All of our examples 
are on the unit interval I =  [0, 1] and satisfy f (0)  = 0 and f ( 1 ) =  1. 

4. M A P S  W I T H  THREE M O N O T O N E  PIECES 

Given a number s, with 1 < s < 3, we consider the family PL(s) of all 
piecewise linear maps f from [0, l l  to itself satisfying the following three 
conditions. 

1. f ( 0 ) = 0  and f ( 1 ) =  1. 

2. f has exactly three linear pieces. 

3. f has slope s on the first and third linear piece and slope - s  on 
the second linear piece. 

It follows from the third condition that i f f e  PL(s), then h(f)= log(s). 
Note that for each f e  PL(s), to(f)= 0, t 6 ( f ) =  1, and t4(f) is deter- 

mined by t2(f). Explicitly, 

(tz(f)+ s - 1  ~ 2  1) (t4(f), f(t4(f))) = -~s ' Stz(f) - 
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This is illustrated in Fig. 2. Thus, for each s, PL(s) consists of a one- 
parameter family of maps f t  where we let t = t2(f), and (as can be easily 
computed) (s - 1 )/2s <~ t <<. 1/s. 

Our goal is to prove that for all but countably many s with 1 < s < 3 
the following holds. Given a map g with three monotone pieces such that 
g ( 0 ) = 0  and g ( 1 ) = l ,  there is a map f ,~PL(s)  such that either 
K(g) <~ K(ft) or K(g) >>- K(f,). This will enable us to apply Theorem 1.3. To 
prove this, we need several preliminary results. 

Let -~3 denote the set of all possible itineraries of points under maps 
with exactly three monotone pieces with the same sign function as the 
maps in PL(s). 

Lemma 4.1. Let [ ~ 3  be a fixed itinerary. Supposef, EPL(s), and 
suppose one of the following holds with j = 2 or 4: 

If,(ft(t:(ft))) > I (1) 

I~(f,(tj(f,))) < / (2) 

Furthermore, suppose that ly,(f,(tj(f~))) consists of only odd numbers. 
Then the corresponding inequality holds for all fc  in PL(s) with t' 
sufficiently close to t. 

Proof. Let 

I~(ft(ti (ft))) = a = (ao, al ,  a2,...) 

and let I=b=(bo,  bl, b2,... ). Let k denote the smallest nonnegative 
integer with ak ~ bk. The inequality (1) or (2) is completely determined by 
(ao, al ,  a2,..., ak) and (bo, bl, b2 ..... bk). 

t=t 2 (f) t 4 (f) 

Fig. 2. The family of piecewise linear maps of the interval with slope _+s with three 
monotone  pieces. Both the x and y axes are [0, 1 ]. 
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For t' sufficiently close to t, each of the two turning points off, ,  as well 
as the first k iterates under fc  will be close to the corresponding turning 
points and iterates under ft .  Also, the intervals used to compute itineraries 
under f,, will be close to the corresponding intervals for f , .  Since 
ao, aa ,..., a~ are all odd, it follows that for t' sufficiently close to t, if 

If,,(f< ( t j (L , ) ) )=  a ' =  (a~, a'l, a2,...) 

then (a~, a], a~,..., a~) = (ao, al ,  a2,..., ak). The conclusion of the lemma 
then follows. II 

A piecewise linear map f of an interval to itself is said to be a linear 
Markov map if each endpoint of a linear piece has a finite orbit. 

We remark that for certain values of s, the family PL(s) contains 
linear Markov maps. For  example, if s = (1 + ,,/5)/2 and 

4 

then the map f t ePL(s )  is linear Markov. For  this map f ,  f t(te(f ,))= 

t4(f,) = 1/2, f t (1 /2 )=  (3 - , , / 5 ) / 4 ,  and f,((3 - , , f 5 ) / 4 ) =  ( , , ~ -  1)/4 = tz(f,). 
Thus, t2(ft) and t4(f,) are in the same orbit of period 3. 

Proposition 4.2. Let g be a map with three monotone pieces such 
that g (0 ) =0 ,  g ( 1 )=  1, and g has the same sign function as the maps in 
PL(s). Suppose that for some fixed value of s, PL(s) does not contain a 
linear Markov map. Then there is a map f ,  ~ PL(s) such that K(g)<<. K(ft) 
or K(g) >>- K(f,). 

Proof. First, suppose that for some f ,  E PL(s) we have 

If,(f~(t2(f~))) = Ig(g(t2(g))) (3) 

If If,(ft(tz(f,))) contains an even number, then since f ,  is not Markov, 
a = I~(j~(t4(f,))) does not contain an even number. Thus, in this case, if 
b=Ig(g(t4(g))), we must have one of a = b ,  a < b ,  or b < a ,  and hence 
either K(g)<~K(f~) or K(g)>1 K(ft). If If,(f~(t2(f,))) does not contain an 
even number, then a may contain an even number and we may have 
neither a < b  nor b < a .  However, in this case if a = ( a o ,  al,...) and b =  
(bo, bl .... ), then for some k we have ai = bi for 0 ~< i ~< k and ak = bk is even. 
Since we already know that the itineraries of the other three critical points 
o f f ,  [i.e., the critical points 0, 1, and tz(ft)-] agree with the itineraries of 
the corresponding critical points of g, it follows that a = b .  Hence, 
K(g) = K(ft). Thus, the conclusion of the proposition follows whenever the 
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equality (3) holds. Similarly, the conclusion of the proposition follows 
whenever 

I~(Z(t4(L))) = Ig(g(t4(g))) (4) 

Thus, we may assume that neither (3) nor (4) holds. Let c denote the 
infimum of the set of t e  [ ( s - 1 ) / 2 s ,  l /s]  such that 

b~(L(t2(f,))) > Ig(g(tz(g))) 

Note that this set is nonempty since the inequality holds when t = 1Is. We 
divide the proof  into three cases. 

Case 1. (s - 1)/2s < e < 1/s. 
For  all t e  [ ( s -  1)Is, e) we h a v e  

If,(ft(ta(ft))) < Ig(g(t2(g))) 

On the other hand, for any e > 0, the interval [c, c + e) contains a value of 
t with 

I~(f,(t2(L))) > Ig(g(t2(g))) 

It follows from Lemma4.1  that lfc(fe(t2(fc)) ) contains an even 
number. Since fc is not a linear Markov map, it follows that Izc(fc(t4(fc)) ) 
does not contain an even number. Hence, by Lemma 4.1, either for all t in 
some open interval containing c, 

If~(f~(t4(ft))) > Ig(g(t4(g))) 

or for all t in some open interval containing c, 

I~(ft(t4(ft)) ) < Ig(g(t4(g))) 

In either case, the conclusion follows. 

Case 2. e = ( s -  1)/2s. 
Since fc( ta( fo))= 0, and fc  is not a linear Markov map, it follows that 

Ij~(fc(tz(fc)) ) does not contain an even number. Hence, by Lemma 2.1 and 
the choice of c, we must have 

IFc(f~(tz(fo))) > Ig(g(t2(g))) 

and hence K(f~) t> K(g). 

Case 3. e=  l/s. 
In this case, 

I~(fo(t2(f~))) > Ig(g(t2(g))) 
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but Ij;(f~(t2(f~)))< Ig(g(t2(g))) for all t <  c. As in Case 1, the conclusion 
follows by using Lemma 4.1. | 

Given a linear Markov map f, we associate a matrix A = (a•) to f as 
follows. Let 11,..., I ,  denote the intervals joining adjacent points in the set 
of points in the orbit of an endpoint of a linear piece. Assign a/j as follows: 

1 if f(Ii) = Ij 
a/j= 

0 otherwise 

Since A has entries 0 and 1, there is a unique, real, nonnegative 
eigenvalue 2 of A satisfying 2 >~ I~1 for all eigenvalues # of A. We call 2 the 
maximal eigenvalue of A. 

The following proposition is well known. 

P r o p o s i t i o n  4.3. Let f be a linear Markov map. Let 2 be the 
maximal eigenvalue of the matrix associated t e l  Then the following holds: 

h ( f )  = {10og 2 if 2 > 0  
if 2 = 0  

T h e o r e m  4.4. For all but countably many s with 1 < s < 3 ,  the 
following holds. Given an arbitrary map g with g(0) = 0, g(1) = 1, such that 
g has exactly three monotone pieces, there is a map f ,  ~ PL(s) such that 
either K(g) <~ K(f~) or K(g) >>. K(f~). 

Proof. Suppose that for a given s the conclusion does not hold. Then 
by Proposition 4.2, PL(s) contains a linear Markov map f Since h( f )=  
log(s), it follows from Proposition 4.3 that s is the maximal eigenvalue of 
a matrix with entries zero and one. Since there are only countably many 
such matrices, there are at most countably many choices for s. This proves 
the theorem. | 

5. A THEORETICAL A L G O R I T H M  

In this section we present an algorithm to compute the topological 
entropy of a map of the interval with three monotone pieces. Without loss 
of generality we assume that g: I ~  I with I =  [0, 1]. Furthermore, as 
pointed out in Section 1, we may assume that g(0)e{0,  1} and g(1)~ 
{0, 1}. We assume that g ( 0 ) = 0  and that g (1)=  1. The case that g(0)=  1 
and g(1)=  0 can be handled in a similar fashion. 

We know that the topological entropy o f f  with three monotone pieces 
must fie in the interval I, = [0, log(3)]. The basic idea of the algorithm is 
to approximate h(f)  by dividing 11 into two intervals with log(2) as the 
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dividing point and determining which one contains h(g). Call that interval 
12. Determining which interval contains h(g) is accomplished by finding a 
comparison of g with an fs e PL(s), s = 2. The comparison will determine 
whether g has topological entropy greater than or less than log(2). Having 
determined I z= [a, b], we repeat the process on 12 to find a smaller 
interval I3 containing h(g). The interval 13 is determined by finding a 
comparison of g with an f~ E PL(s), s = (ca+ eb)/2. The procedure should 
be fairly clear at this point. 

The difficult part in developing an algorithm using the above 
philosophy is in finding a map f ,  e PL(s), s = (ca+ eb)/2 such that f~ has a 
comparison with g. 

We let KN(g ) be the first N terms in the kneading matrix of g. We let 
Ig, u(g( t i (g))  ) denote the first N terms in the itinerary of g(ti(g)) under g, 
and let lf, u ( f s ( t i ( f s ) )  ) denote the first N terms in the itinerary off,(t;(f~)) 
under fs. 

The A l g o r i t h m  

First choose a number N which will be the number of terms in the 
kneading matrix used for comparison. In our previous paper the number N 
could be determined beforehand so that the estimate of the topological 
entropy h(g) would be accurate to within a prescribed e > 0. In Section 4 
we determine empirically the number of digits of accuracy that can be 
expected using different numbers of terms in the kneading matrix. 

Assume that g: I ~ I is a piecewise monotone map of the unit interval 
with three monotone pieces satisfying g(0)= 0 and g(1)=  1. Let s >  0 be 
given. Let k be the number of digits of accuracy used in the computations. 

Step 1. Compute lg, N(g(t2(g)) ) and Ig, N(g(t4(g)) ). 
Step 2. Let I =  E1, 3 ] =  [a, b]. 

Step 3. L e t s = ( a + b ) / 2 .  

Step 4. Let c = ( s -  1)/2s and d = 1Is. 

Step 5. Take the fs ~ PL(s) with t2(fs) = c = (s - 1)/2s. Note that s and 
t2(f~) determine the value of t4(fs). 

Step 6. Compute Iy, u(f~(t2(f~))) and /ZN(fs(14(fs))). 
Step 7. Compare lzN(fAt2(fs)) ) with Ig, N(g(t2(g))) and If, N(f~(t4(f~))) 

with Ig, N(g(t4(g)) ). If If, N(f~(t2(f~)))<Ig, N(g(t2(g))) and 
If, N(f~(t4(f~)))>Ig, u(g(tn(g)) ), then let a = s  and go to 
Step 16. If If, N(f~(t2(f~)) ) > [g, iv(g(t2(g))) and If, jv(f~(t4(f~)) ) < 
Ig.u(g(t4(g))), then let b = s  and go to Step 16. Otherwise 
continue to the next step. 
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Step 8. Take the f ,  ~ PL(s) with t2(f,) = d = 1Is. Note that s and td f , )  
determines the value of t4(f,). 

Step 9. Compute /f ,U(fs(/2(fs)))  and [f,N(fs(t4(fs))). 
Step 10. Compare If .u(f ,(tz(f ,))) with Ig.s(g(t2(g)) ) and IzN(f~(t4(f~))) 

with Ig, N(g(t4(g))). If Ii, N(L(tdf~)))<Ig.u(g(tz(g)))  and 
If, x(f~(t4(f~)))>Ig, x(g(t4(g))), then let a = s  and go to 
Step 16. If Ij;u(f~(t2(f,)))>Ig, u(g(tz(g))) and b,u(f,(t4(f,))) < 
Ig, N(g(t4(g))), then let b = s  and go to Step 16. Otherwise 
continue to the next step. 

Step 11. If d - c <  10 -x, go to Step 17. Otherwise continue to the next 
step. 

Step 12. Let f s ePL(s )  have slope s given in Step 2 and let tz(fs)= 
(c + d)/2. 

Step 13. Compute If, N(fs(la(fs)) ) and !tiN(fs(t4(fs))). 
Step 14. Compare b,x(A(t2(fs))) with Ig, N(g(t2(g))) and b,x(f,(t4(f,))) 

with Ig, u(g(t4(g))). If Ij;~v(f~(t2(f,)))<Ig, u(g(t2(g))) and 
If, x(f~(t4(fs)))>Ig.u(g(t4(g))), then let a = s  and go to 
Step 16. If Ij;u(fs(t2(Z))) > Ig.s(g(t2(g))) and b,x(Z(t~(L))) < 
I~,N(g(t4(g))), then let b = s  and go to Step 16. Otherwise 
continue to the next step. 

Step 15. If If, N(fs(t2(f~)))<Ig, u(g(t2(g))), then let c=t2(f~) and go to 
Step 11. If If, u( f , ( tdf~)))  > Ig, N(g(t2(g))), then let d =  tdf~ ) and 
go to Step 11. Otherwise go to Step 17. 

Step 16. If b - a < e ,  then log(a)<~h(g)<~log(b). Use log((a+b)/2) to 
estimate h(g). Otherwise go to Step 3. 

Step 17. The algorithm failed. 

Whenever one reaches Step 16 in the above algorithm, then one can be 
confident that log(a)<~h(g)<~log(b), assuming that roundoff error is 
insignificant. 

However, the above algorithm will not infallibly lead to Step 16. It 
could happen that for a given N and e > 0 the algorithm ends in Step 17. 
We list the possible reasons. 

1. In Step 2, the slope s could be such that PL(s) contains a linear 
Markov map. 

In this case we cannot apply Proposition 2.2 to guarantee that for 
some f ,~PL(s )  there is a comparison K(f~)>~K(g) or K( f , )~K(g) ,  
much less that If, u(fs(t2(f~)))<Ig, u(g(t2(g)) ) and If, N(f~(t4(f~)))> 
[g,u(g(14(g))) or Ir >Ig, u(g(t2(g))) and Ir < 

822/66/3-4-6 
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s . a x i s  3 

Fig, 3. Plot of the number of digits accuracy in estimating s e [ 1, 3 ] using the algorithm with 
20 terms in the kneading matrix. Details in text. 

Ig, N(g(t4(g)) ). However, there are only countably many s for which this 
can happen. Those s in fact are algebraic numbers and thus in theory one 
could choose b in Step 2 to be in the interval (3 - ~, 3) such that none of 
the slopes s that subsequently arise in Step 3 are algebraic numbers. With 
such a choice of starting b, if K(g)>~ K(ft) for some f t e  PL(b), then b -  e <~ 
h(g) ~ b and we can estimate h(g) by b -  ~/2. 

Since roundoff error is a consideration in any practical implementa- 
tion of the algorithm and since the probability of situation 1 occurring is 
theoretically zero, we simply ignore this possibility and take our chances. 

7 

6 

5 

4 

3 

2 

1 

0 

1 

Fig. 4. 

s - a x i s  3 

Plot of the number of digits accuracy in estimating s~ [ l ,  3] using the algorithm with 
20 terms in the kneading matrix. Details in text. 
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1 0  
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8 
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5 

i 2 ~ 

\ 
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0 

1 s - a x i s  3 

Fig. 5. Plot of the number of digits accuracy in estimating s ~ [1, 3 ] using the algorithm with 
40 terms in the kneading matrix. Details in text. 

2. For some s, t, and N, Is, u(f~.(t2(fs)))<Ig, u(g(t2(g)) ) and 
lj;u(fs(t4(f~))) > Ig, N(g(t4(g))) o r  Is, u(f ,(t2(f~)) ) > Ig, u(g(t2(g)))  
and Ir u(g(&(g))), but we did not apply the 
algorithm with sufficiently large N to obtain these comparisons. 

Experience using the algorithm helps one guess if N will be sufficiently 
large to avoid this difficulty. However, there is a third difficulty. In theory, 
the algorithm could fail for all N, even if there are no linear Markov maps 
in PL(s). We list this as follows. 

3. A failure will occur if for s and t, If(fM2(f,)))=Ig(g(t2(g))) or 
/ f ( f ~ ( t 4 ( f ~ ) ) )  = Ig(g(t4(g))). 

Fig. 6. 

0 1 

The family of functions f(x)=x+2sin(2~x) for 2 in the range 2 o = 1 / ( 2 ~  ) to 
21 =0.7326.  The y axis is [0, 1]. 
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)~r ::. 55 ,~ =. 7326 

Fig. 7, Bifurcation diagram for the family of functions f ( x ) = x  + )~ sin(2~x) for ;~ in the 
range ;~0=0.55 to ;tl =0,7326. The y axis is [0, 1]. 

In the first e a s e  [ f , N ( f t ( t 2 ( f r ) ) ) ~ - [ g , u ( g ( t 2 ( g ) ) }  for all N and in the 
second case II;u(ft(t4(ft)))=Ig, N(g(t4(g))) for all N. Note that both 
equalities would only occur if s=exp(h(g)), an occurrence having 
probability zero. If one of the equalities in case 3 occurs, then one would 
never obtain the inequalities in Steps 7, 10, or 14 for the algorithm to end 
in Step 16, no matter how large N might be. In practice this seems to be 
a rare occurrence. One can see theoretically why this is rare by observing 
that with an arbitrarily small change in the value of t-=-t2(f,) or s the 
respective itineraries will no longer be equal. The next section gives a 
practical modification of the algorithm to minimize these difficulties. We 
also adduce empirical evidence that the practical modification gives the 
accuracy expected in the theory. 

j IF  .... j l f f J / / J  I 

/ 

~ j J  

Fig. 8. 

i 

.k~ =.55 ~.~ = ,7326 

Topological entropy of the family of functions f ( x )  = x + ;(sin(2~zx) for ,~ in the range 
20=0.55 to 21 =0.7326, The y axis is [0, log(3)]. 
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0 1 

Fig. 9. Pa ramet r i zed  family of funct ions  g(x, t) = x ( x -  �89 - �89 2 for 0 ~< t ~< 1.5. The  x 
and  y axes are [0, 1 ]. 

6. PRACTICAL M O D I F I C A T I O N  OF THE A L G O R I T H M  

Our practical implementation differs from this theoretical algorithm in 
an important detail; we modify Steps 7, 10, and 14 to accept equality of the 
respective finite itineraries as constituting a comparison. 

These changes reduce the likelihood that the algorithm will fail for 
reason 2 or 3 at the end of Section 5. However, with this modification we 
no longer have any theoretical assurance of the accuracy of the numerical 
results. We devised an experiment to empirically test the modified algo- 
rithm. For  each s with 1 < s < 3  there is a unique f ,~PL(s)  with 
t2(f,) = I/3. Let PL1/3(s) denote the collection of these functions. For  each 
s, log(s)=h(fs) and in Step 16 of the original or modified algorithm 
s'= (a + b)/2 is an estimate of s. In our experiment we plot - l o g ( I s ' - s ] )  
versus s over the interval s t  [1, 3] for 534 values of s. The function 

/ 

Fig. 10. 

1,3 t - a x l s  1.5 

Topological  en t ropy  for the funct ions  g(x, t ) = x ( x - � 8 9  �89 2 for 1.3 ~< t ~< 1.5. 
The  y axis is [0, log(3)] .  
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0 1 

Fig. 11. Parametrized family of functions 

~tx( 1 - x)  x <~ 3/4 
f ( x ,  t ) =  ~ ( 4 - 3 t / 4 ) ( x - - 3 / 4 ) - 3 t / 1 6  3/4<~x<. t 

for 0~< t~<4. The x and y axes are [0, 1]. 

- l o g ( l s ' - s l )  gives us the number of digits accuracy obtained in the 
estimate s' by the algorithm. In Figs. 3-5 we plot the results of this experi- 
ment. In each of the three figures the bisection (Step 3 of the algorithm) 
was only performed 34 times. Thus, the accuracy cannot be more than 
2 - 3 4 ~  10 -1~ no matter how many terms in the kneading matrix were used. 
Thus there are no more than ten digits of accuracy. In Fig. 3 we used 10 
terms in the kneading sequence, in Fig. 4 we used 20, and in Fig. 5 we used 
40. One should compare these graphs with the graphs in Figs. 3-6 in ref. 2. 

0 4 

Fig. 12. Topological entropy for the functions 

f tx(1 - x) x<~ 3/4 
f ( x ,  t) = (4 - 3t/4)(x - 3/4) - 3t/16 3/4 ~< x <~ 1 

k .  

for 0~< t~<4. The y axis is [0, log(3)] .  
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Fig. 13. The topological entropy of the parametrized family f(x)=x3+ax+b for 
ae [ -3 ,  -1.6875] and be [0, 2.5]. The z axis is [0, log(3)]. 

7. S O M E  EXAMPLE C O M P U T A T I O N S  

In this section we include some graphs of  the topological ent ropy of 
parametr ized families of  functions with three mono tone  pieces (Figs. 6-12). 
The graphs were obtained using an adapta t ion  of the algori thm given in 
the last section. The computa t ion  time was a few minutes for each graph 
using True B A S I C  on a Macintosh IIci. 

In Fig. 13 some explanat ion should be given regarding our  definition 
of  the topological  ent ropy of  the maps  fa, b(X) = X 3 + ax  + b. Observe that  
f e x t e n d s  to a mappingf ' :  R ~ { -- oo, oe } ~ R w { - o% oe } and that  this is 
topologically equivalent to a mapping  g: I ~  L We defined h ( f )  as h(g)  for 
this associated g. There is interest in the graph of the topological  ent ropy 
of this family because of a conjecture of  John  Milnor  that  the sets E C = 
{(a, b) lh( fa ,  b )=C}  are connected for all c. The graph lends credibility to 
the conjecture. 
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